If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2+k-8=0
a = 2; b = 1; c = -8;
Δ = b2-4ac
Δ = 12-4·2·(-8)
Δ = 65
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{65}}{2*2}=\frac{-1-\sqrt{65}}{4} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{65}}{2*2}=\frac{-1+\sqrt{65}}{4} $
| -2/3x-1=1/3x-4 | | 2×+3=6x-5 | | q-12=72 | | 7x*x+18=0 | | (5x/9)+(5x/3)=20 | | 2^x+3.2^x-1=0 | | 34=200-x | | 12-(-y-5)=23 | | 8÷a=0,005 | | -x+90=244 | | h÷7=5 | | 4x-x10-2x=5x+3 | | 1/4x-1/12=1/3x-1/6 | | X^3-12x-x+12=0 | | 12p-4=2 | | 200x+0.43=100×-0.56 | | 8÷x=0.005 | | 19=5x+3-2x | | 13k+5=7 | | 269=165-u | | 173=-x+254 | | -4n-14=-14-6n | | 3.4=d+4 | | 7-(5t-13t)=-25 | | 3.8=d-4 | | 16-17z=-18z | | 225-y=141 | | 3.8=d-2 | | -1/6x+x/3=-12 | | 3.8=d-3 | | 9-1+2y=6y+2 | | -15-6-6s=-8s+13 |